
  
Abstract — Filter design technique called filter sharpening 

(a new filter created from an existing filter in which the 
passband ripple is reduced and the stopband attenuation is 
increased) is presented. The proposed method is applied on 
the Chebyshev infinite impulse response (IIR) filter whereas 
in the past the 30 year old technique had been applied only to 
FIR filters with constant group delay. Using a small area of 
field programmable gate array chips for placing only two 
fourth-order IIR filters, and the hardware folding 
techniques, a number of different filter specifications can be 
fulfilled. The method is attractive for filter designs without 
extensive analysis of nonlinear effects and for the fixed point 
implementations. 
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I. INTRODUCTION 
HE operating rate of field programmable gate array 

(FPGA) chips can be considerably larger than the 
processing rate for digital signal processing (DSP) 
applications in audio, communication or control systems. 
The used area of FPGA chips can be significantly reduced 
by time sharing the hardware resources [1], that is, the 
same implemented filter structure is used several times 
between two successive input samples.  An excellent 
solution is the hardware folding technique to time-
multiplex many algorithm operations onto a single 
functional unit such as an adder or a multiplier [1]. 
Although this technique can be used for the 
implementation of infinite impulse response (IIR) filters as 
cascade connection of the second-order section (SOS) 
filters, the design by an  inexperienced user may fail to 
fulfill the filter specification due to nonlinear effects such 
as overflow and dead-band effects, pure dynamic range of 
SOS filters, or coefficient quantization.  
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Filter sharpening is a known technique in filter theory - 
a new filter is created from the existing low-order filter 
and is sharpened in such a way that the passband ripple is 
reduced and the stopband attenuation is increased [2]. This 
technique is not applicable to filters having non-constant 
group delay such as minimum phase finite impulse 
response (FIR) filters or IIR filters.  

Digital filter design becomes an effortless task because 
it can be accomplished using powerful software tools. 
Unfortunately, many designs of selective IIR filters can 
fail to fulfill specifications in fixed point implementations 
with FPGA chips. The filter design can be simplified if the 
same kind of universal filter sections can be used as 
building blocks, rather than design for each set of 
specifications and perform thorough analysis of nonlinear 
effects.  

In this paper we present a design method that consists 
of a cascade connection of several low-order IIR filter 
sections. The attenuation in the passband can be kept very 
low, while increasing the number of repeated sections 
increases the stopband attenuation. The advantage of an 
FPGA implementation of the proposed filter sharpening 
method is illustrated by an example.  

II. EQUIRIPPLE RATIONAL FUNCTION 

A. Rational magnitude function  
It is easy to establish [3] the equiripple character of 
rational magnitude functions  
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In these equations )(xTr  is the r-th order Chebyshev 

polynomial. The constants Nε  and Dε  are called the 
ripple factors while the integer µ  can be of any value 

2≥µ .  

B. Minima and maxima of the magnitude function 
The examination of the first and the second derivatives 

of equation (1) show that the independent variables of the 
minima minx  of the rational function )(xR  are 

determined by the roots of the equations  
 )(,0)( ' xTxT rr =  (3) 

At minx  and 1=x  the value of the magnitude function 
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is 1: 
 1)1(,1)( min == RxR  (4) 

The position of maximum can be found from 
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The ripple factor (the maximal variation of the 
magnitude function)  
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The constant k can be expressed as a function of Nε  or 

Dε  
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All roots of equation (5) are real for 10 << Dε  and 
2>µ , which provide the equiripple character of the 

magnitude function. 
The positions of the minima minx  are not function of 

Nε  or Dε . The positions of the maxima maxx  change 
slightly with µ  and Nε  or Dε .  Therefore, the shape of 
the magnitude is practically the same for any µ  and Nε  
or Dε  for 10 ≤≤ x . Conversely, the magnitude function 
decreases 6 rµ dB/octave.  

The equiriple rational function can be used as 
approximating function for filter sharpening because it is 
based on processing the date µ  times with the same start-
up filter (Chebyshev filter).   

III. DESIGN METHOD  
The simplest solution of filter sharpening is filtering the 

data k times with the existing filter. If the original filter’s 
transfer function is H(z), then the new transfer function is 
(H(z))k. The new filter has the same band edges and the 
minimum attenuation, in decibels, is k times larger in the 
stopband. The drawback is that the passband ripple is also 
k times larger in decibels. This solution improves the 
stopband but degrades the passband.   

The filter sharpening of analog filters [3] provides very 
low passband ripple and the Q factors of the dominant 
transfer-function pole pairs are reduced. An active RC 
filter cannot be efficiently implemented as a selective filter 
with very high pole-Q factors, while multiple low-Q factor 
SOS filters can be massively produced. Using the bilinear 
transformation, analog filters with low-Q factors are 
transformed into digital filters that are more robust for 
fixed point implementation [4]. Therefore, the same 
method as used in [3] can be used for digital filter 
sharpening. 

The standard filter Hs(z) should be chosen to be simple 
for implementation. For example, the standard filter can be 
the fourth-order Chebyshev filter that has small passband 
ripple (say As=0.1 dB) and it consists of two SOS filters  
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The coefficients are shown in Table 1. 

The filter has a stopband attenuation of 8 dB at the 
stopband edge fs=0.135; the passband edge frequency is 
fp=0.1. The target filter, the cascaded connection of µ basic 
filters, should have the minimum stopband attenuation 40 
dB; it also has large passband ripple 0.1•µ dB. To achieve 
a stopband attenuation of 40 dB, the number of cascades µ 
is equal to 5. Let us design the fourth-order Chebyshev 
filter Hi(z) that has the passband ripple 0.5 dB for µ=5. 
The coefficients are shown in Table 1.  

TABLE 1: COEFFICIENTS OF THE FILTER. 
Coefficients  

1sa  –1.26232 
2sa  0.44004 
3sa  –1.310268 
4sa  0.73834 
1ca  –1.46622 
2ca  0.58087 
3ca  –1.44789 
4ca  0.814144 

 
The transfer function of the new filter 

H(z)=(Hs(z))µ/Hi(z) can be simplified H(z)=(Hs(z))µ-1Hc(z) 
in such a way that a new forth order filter becomes Hc(z)= 
Hs(z)/Hi(z)  
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The transfer function of cascaded connection of m 
standard and n compensation sections becomes  
 ( ) ( )n

c
m

s zHzHzH )()()( =  (12) 
In Figures 1, 2 and 3, the attenuations of filters are 

shown for a number of combinations of m and n. The 
minimum stopband attenuation increases with the number 
of Hs(z) sections while the passband ripple is the same as 
for the standard section, in this case 0.1 dB. The passband 
ripple is smaller than the ripple of the standard filter  
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for  
 )1(,10 10/ −== µα nmsA  (14) 

For example, for µ=5, n=1, As=0.1 dB, the input data is 
filtered 4 times using the standard filter Hs(z) and ones 
using the compensation filter Hc(z); the overall passband 
ripple is An=0.0058 dB and the minimum stopband 
attenuation is As min=26 dB. For n=2, the data is filtered 8 
times using Hs(z) and twice using Hc(z), the overall 
passband ripple is An=0.0116 dB and As min=52 dB.   

Attenuation of filters depends on the number of 
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standard and compensation filters used. Solid lines 
represent transfer functions with passband ripple between 
0dB and 0.1dB, dotted lines depict transfer functions with 
passband ripple between -0.1dB and 0dB, while dashed 
lines are transfer functions with passband ripple smaller 
than 0.1dB. 
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Fig. 1. Attenuation of filters for different number of 

standard and compensation filters. 
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Fig. 2. Attenuation of filters in the passband. 
 
Figure 4 demonstrates the implementation using field 

programmable gate array chips with only two time-folded 
fourth-order filters. Each filter consists of two cascaded 
SOS filters. Therefore, the two second-order sections are 
standard sections. The first SOS section has the transfer 
function zeros on the unit circle, while the second section 
has zeros within the unit circle. In fact, the control circuit 
is very simple, it consists of multiplexer and 
demultiplexer. It looks like some up-sampler or down-
sampler in the classic multirate system, but it effectively 
works similarly to the classic time multiplexing system. 
Consequently, the timing diagram is very simple.  

The term small area is used to emphasis that the used 
area is always the same and that it does not depend on the 
actual transfer function order. For example, with m=16 
and n=4, the used are will be approximately 20 times 
larger. On the other hand, using the multiplier-less 
technique, the general multipliers can be implemented 
using only binary shifters, or a few adders and binary 

shifters, which can additionally reduce the used area on 
the FPGA chips.  

The appropriate chip is selected according to the 
required functionality of the device, in which the 
implemented filter is used for filtering only.  

In some applications it may be useful to use different 
filter specifications, with larger and smaller stopband 
attenuation, but with the same edge frequencies and very 
small passband ripple. Instead of implementing two filters, 
this filter can be used. Thus, the used area of one filter is 
smaller than the used area of two filters.  

The benefits of using this method are (1) the usage of 
the same chip area regardless of the transfer function 
order, and (2) the possible savings in the number of 
general multipliers that are implemented using a small 
number of adders and binary shifters. More details on the 
multiplier-less technique can be found in [4]. 
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Fig. 3. Attenuation of filters in the transition. 

IV. CONCLUSION 
Using a small area of FPGA chips for placing only two 

fourth-order IIR filters, and hardware folding techniques 
to time-multiplex operations onto two filters, a number of 
different filters can be implemented. All filters have the 
same passband and stopband edges, the same or smaller 
passband ripples, and arbitrary minimum stopband 
attenuations that are functions of the down-sampling and 
up-sampling factor. The method called sharpened IIR 
filters is especially attractive for practicing engineers 
without extensive knowledge of filter theory, and for filter 
design without thorough and extensive analysis using filter 
design tools. 
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Fig. 4.  Implementation of a sharpened IIR filter that consists of two filters Hs(z) and Hc(z), control circuits, two-input 

multiplexers and up-sample and down-sample blocks that control the data rate through the filters. 
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